
Abstract. We outline two new symmetry-adapted per-
turbation theories (SAPTs) and present some results ob-
tained with them. The first is superior to the symmetrized
Rayleigh–Schrödinger (SRS) theory in that it corrects
a fundamental defect of that theory, namely, that carried
to infinite order the SRS theory cannot predict even
the ground-state energy for most interacting atoms and
molecules. The new theory includes correction terms
which have a large cumulative effect, but which, order by
order, make only small contributions. When applied to
interacting closed-shell systems and truncated after first
order in the wave function, it is equal in accuracy to the
SRS theory. Thus, it provides both an understanding of
why the SRS theory gives results of useful accuracy and
justification for its continued use when truncated to low
order. The second new SAPT also corrects the SRS the-
ory’s flaw, but achieves significantly greater accuracy than
the SRS theorywhen truncated after first order in thewave
function. Applied to the interaction between the open-
shell Li andH atoms, a critical test case, the second theory
gives the ground-state dissociation energywith an error of
1%, whereas the SRS theory is in error by 38%. The LiH
molecule is a critical test case because its physical ground-
state energy, like that of nearly all systems, lies in a
continuum of accessible states which violate the Pauli
exclusion principle.
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1 Introduction

We outline two new perturbation theories for the
calculation of intermolecular energies. The first is
fundamentally superior to the symmetrized Rayleigh–
Schrödinger (SRS) perturbation theory [1, 2], a theory

that has given interaction energies of good accuracy for
a variety of systems and that has been implemented in a
computer program of general utility [3]. The second, a
refinement of the first, is fundamentally and numerically
superior to the SRS theory.

The SRS theory is the polarization approximation
(PA) [4] plus an energy formula. For simplicity of ex-
position we consider a diatomic system A–B. Its non-
relativistic Schrödinger Hamiltonian, ĤH is split into two
parts. One part, ĤH�, is the sum of the A-atom Hamil-
tonian and the B-atom Hamiltonian with electrons
1 to NA assigned specifically to A, and NA + 1 to
N ¼ NA + NB assigned to B. The unperturbed Hamil-
tonian is ĤH� and the perturbation is V̂V ¼ ĤH � ĤH�. The
basic idea of the PA theory is to solve

ĤH� þ kV̂V
� �

F ðkÞ ¼ EðkÞF ðkÞ ð1Þ
by Rayleigh–Schrödinger perturbation theory, obtaining
F (k) and EðkÞ as power series in k. When k ¼ 0 Eq. (1)
describes the noninteracting atoms, when k ¼ 1, the
interacting atoms. The SRS theory defines the interac-
tion energy by

DEðkÞ ¼ k F � V̂VÂA
�� ��F ðkÞ� �

= F � ÂA
�� ��F ðkÞ� �

; ð2Þ

where ÂA is the totally antisymmetric projection operator
and F (k) is the solution to Eq. (1) for which F (0) ¼ F�,
the lowest eigenfunction of ĤH�.

The PA/SRS theory has a fundamental flaw. The
Schrödinger equation has physical and unphysical solu-
tions. The latter violate the Pauli exclusion principle
(PEP). Let the physical eigenfunctions and eigenvalues of
ĤH be Uk and Ek, respectively, ordered so that Ek � Ek+1.
The unphysical eigenfunctions and eigenvalues areUu

k and
Eu
k , ordered so that Eu

k �Eu
kþ1. When A–B has more than

two electrons Eu
1 lies below the physical ground-state

energy, E1 [5]. When one or both atoms have an atomic
number greater than 2, E1 generally lies in a continuum
of unphysical energies [6]. Below the continuum are an
infinite number of discrete unphysical energies. It is the
overlapping of the physical and unphysical energy spectra
that makes the PA expansion generally divergent and
makes the SRS theory fundamentally unsound.

Correspondence to: W.H. Adams
e-mail: adams@rutchem.rutgers.edu

Regular article

Two new symmetry-adapted perturbation theories for the

calculation of intermolecular interaction energies

William H. Adams

Wright and Rieman Chemistry Laboratories, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854-8087, USA

Received: 22 May 2002 /Accepted: 26 June 2002 / Published online: 17 October 2002
� Springer-Verlag 2002

Theor Chem Acc (2002) 108:225–231
DOI 10.1007/s00214-002-0377-3



One needs to understand how the PA/SRS theory is
fundamentally unsound to understand that the new
theories are sound. The eigenvalue EðkÞ of Eq. (1) is best
understood as a Riemann surface, a multivalued func-
tion of the complex variable k [7]. The Riemann surface
consists of many sheets, EjðkÞ, ordered by their real parts
so that <EjðkÞ � <Ejþ1ðkÞ. The lowest unperturbed en-
ergy lies on the lowest sheet, i.e., E1ð0Þ ¼ E�. The PA
and SRS theories assume incorrectly that E1ð1Þ ¼ E1,
the physical ground-state energy. Generally, E1ð1Þ
equals the lowest unphysical energy, Eu

1 [5]. If E1 lies on a
sheet EJ ðkÞ of the same Riemann surface as E�, one can
imagine analytically continuing from E1ðkÞ to EJ ðkÞ via
the intervening sheets [7]. The index J is indeterminately
large for most systems. Thus, the PA theory yields an
indeterminately large number of unphysical solutions
before it yields the physical ground-state solution.
Consequently, the SRS theory cannot predict for most
systems even the physical ground-state energy when
carried to infinite order [8]. It is, however, reasonably
accurate when truncated after first order in the wave
function.

A number of alternatives to the PA and SRS theories
have been proposed, but only a few are well understood
mathematically. These are the Eisenschitz–London–van
der Avoird–Hirschfelder (EL-HAV) [9, 10, 11], Amos–
Musher (AM) [12, 13], Polymeropoulos–Adams (AP) [14]
and Hirschfelder–Silbey (HS) theories [15, 16]. The EL-
HAV, AM and AP theories have no unphysical energies
below the physical ground-state energy for attractive in-
teractions and, consequently, are capable, in principle, of
predicting the physical ground-state energy exactly. Un-
fortunately, they share a practical defect: to second order
in k the interaction energy they predict is only a fraction of
the asymptotic value at large separations, R. In contrast,
the unsound SRS theory, to the same order, predicts the
asymptotic dependence on 1/R exactly.

The HS theory is designed to predict correctly the
asymptotic 1/R dependence at second order. Because of
this, one can argue that it is the correct theory for cal-
culating interaction energies [17]. Conversely, one can
argue that the HS theory must be as unsound as the SRS
theory because it leaves the physical ground-state energy
buried in the continuum of unphysical energies [18].
Consistent with the latter argument are recent results for
Li interacting with H. The HS expansion for LiH
diverges at k ¼ 1 and is numerically no more accurate
than the simpler SRS theory when truncated to the same
order [19].

These observations suggest that a satisfactory per-
turbation theory for intermolecular energies has yet to
be proposed. This is unsurprising because all the theories
cited were proposed before it was recognized that the
physical ground-state energy generally lies in a contin-
uum of unphysical energies. A recently proposed theory
[20], however, may prove to be satisfactory. Because
it has an essential element in common with ours, we
discuss it in the last section.

We have designed the new symmetry-adapted per-
turbation theory (SAPT) in light of what was learned
from previous ones. Foremost, was that they could be
understood to infinite order if their starting points were

eigenproblems. In addition, F, the lowest energy solution
of the eigenproblem, should be simply related to the
ground-state function, U1, and, at infinite separation,
equals F�. There is a general method for constructing an
eigenproblem which has an eigenfunction, F, with the
properties that ÂAF / U1 and that F minimizes the
expectation value of a reference Hamiltonian, ĤH
 [21].
By setting ĤH
 ¼ ĤH� one gets the AP eigenproblem,
which, by approximation, becomes the AM equation
ĤH� þ kÂAV̂V
� �

F ðkÞ ¼ EðkÞF ðkÞ [22]. The AM-AP theories
shift the energies of unphysical solutions above the
ground-state energy for attractive interactions and
largely eliminate the unphysical energies as a problem.
Unfortunately, they badly underestimate the asymptotic
dependence of the energy on 1/R when F (k) is truncated
after first order. Thus, the question is whether there is
there a better choice for ĤH
.

Our new choice for ĤH
 is based on two observations.
The first is that the lowest unphysical states generally
arise from one or more valence electrons of an atom
falling into the core of its neighbor. This would not
happen if the nuclear Coulomb potentials in V̂V were less
strong near the nuclei. We weaken them by subtracting a
potential ûu. The second observation is that if ûu is short
ranged it will have no effect on the asymptotic properties
of the energy because those properties depend on the
nuclear Coulomb potentials far from the nuclei. We
set ĤH
 ¼ ĤH � ûu ¼ ĤH� þ V̂V � ûu. We define ûu explicitly in
Sect. 2. It belongs to a class of potentials considered
formally by Herring in discussing the long-range
coupling of spins [23].

2 A new starting point

For brevity we simply write down the eigenproblem that
serves as our starting point, establish its properties
and define ûu. The method of derivation is explained
elsewhere [22]. The eigenproblem is

ĤH� þ V̂V � ûuþÂA ûu� Dð Þ
� �

Fk ¼ EkFk ; ð3Þ

where D is a real numerical constant. Its optimum value
for the ground state,

D ¼ F1 ÂAûu
�� ��F1

� �
= F1 ÂA

�� ��F1

� �
; ð4Þ

makes F1 least distorted from the lowest eigenfunction
of ĤH
 [21]. To linearize Eq. (3), however, we define
D somewhat differently for each SAPT, namely, we
substitute the unperturbed wave function for F1 in
Eq. (4).

The solutions of Eq. (3) can be divided into two
classes. One class has the property ÂAFk ¼ 0, i.e., the
functions are purely unphysical. We write F u

k for these
functions and Eu

k for their eigenvalues to distinguish
them from those for which ÂAFk 6¼ 0, i.e., functions
which have a physical component.

Consider first the Fk which have a physical compo-

nent. Multiply Eq. (3) from the left byÂA. The expression
is simplified by using ÂA

2 ¼ ÂA and ÂA ĤH� þ V̂V
� �

¼ ĤH� þ V̂V
� �

ÂA. The result is

226



ĤH� þ V̂V � D
� �

ÂAFk ¼ EkÂAFk : ð5Þ
Thus, if ÂAFk 6¼ 0, ÂAFk must be a physical eigenfunction
of ĤH ¼ ĤH� þ V̂V . Therefore,

ÂAFk / Uk and Ek ¼ Ek � D : ð6Þ
Thus, the physical energies are given exactly by Eq. (3).
Note, too, that the Ek are real if D is real.

We are also interested in the purely unphysical solu-
tions to Eq. (3). Add a superscript u to Fk and Ek in
Eq. (3), then multiply from the left by 1�ÂA, substi-
tuting the identity F u

k ¼ 1�ÂA
� �

F u
k to get

1�ÂA
� �

ĤH�þ V̂V � ûu
� �

1�ÂA
� �

F u
k ¼ Eu

k 1�ÂA
� �

F u
k : ð7Þ

Thus, the Eu
k are real if ûu is Hermitian. We define ûu later

so that Eu
1, the lowest eigenvalue of Eq. (7), is greater

than E1–D. This eliminates the unphysical energies as a
major impediment to the development of a fundamen-
tally sound SAPT.

Because ûu is to cancel to some degree the nuclear
Coulomb potentials in V̂V , we give it a similar structure.
The potential V̂V ¼ v̂vAB þ v̂vBA þ ĝg, where ĝg is the Coulomb
potential energy of the A electrons interacting with the B
electrons and v̂vAB is the potential energy of the B electrons
in the field of the A nucleus, i.e., v̂vAB ¼ �ZA

P
j2B 1=rAj.

We define

ûu ¼ ûuAB þ ûuBA and ûuAB ¼ �ZA

X
j2B /ðrAjÞ ; ð8Þ

where /(rAj) is a real, short-range function of rAj, i.e.,

limrAj!1 rMAj/ðrAjÞ ¼ 0 for all positiveM. The only other
constraint on the form of / (r) is that it make Eu

1 >
E1 � D. The asymptotic 1/R dependence of the ĤH


eigenvalues will be the same as those of ĤH . In addition,
the lowest-energy eigenfunction of ĤH
 becomes F� in the
limit R ¼ 1 [23].

The numerical results we present were obtained using

/ðrÞ ¼ 1=r � 1=c for r � c;
0 for r > c;


 �
ð9Þ

where c is a constant characteristic of each atom. When
)ZA/ (r) is subtracted from )ZA/r the result is )ZA/c
when r � c and )ZA/r when r > c. We also tried
exp ()r/c)/r, but the results differed insignificantly from
those using Eq. (9).

The problem of satisfying the condition Eu
1 > E1 � D

reduces to assigning a value to c for each atom. We
choose cA for atom A so that a B electron binds less
tightly to A+ at infinite separation than an A electron.
This sets a lower bound for acceptable cA values. There
is theoretically no upper bound, but one does not want
cA to be so large that its value dominates the results.
We choose cB analogously. By solving Eq. (7) we have
verified that this method of defining the c values works
even at separations smaller than Re.

3 Corrected polarization approximation

The starting point for the SRS theory is the Schrödinger
eigenproblem. As the starting point for the new SAPT

we use Eq. (3), defining D by Eq. (4) with F� substituted
for F1. As in the PA theory ĤH� is the zero-order
Hamiltonian. The perturbation is then V̂V ¼ V̂V � ûu
þÂA ûu� Dð Þ. Set EðkÞ ¼ E� þ

P1
n¼1 knE nð Þ and F ðkÞ ¼

F � þ
P1

n¼1 knF nð Þ, then apply the Rayleigh–Schrödinger
theory to

ĤH� þ kV̂V
� 


F ðkÞ ¼ EðkÞF ðkÞ ð10Þ

to arrive at the set of perturbation equations. We require
that F �jF �h i ¼ 1 and F �jF ðkÞh i ¼ 1. The terms in V̂V
following V̂V may be interpreted as corrections to V̂V . For
this reason we call this SAPT the corrected PA (cPA).

Just as the SRS formula (Eq. 2) to second order is
more accurate than the sum of the PA EðnÞ to second
order, analogous formulas using the cPA function are
more accurate than summing the cPA EðnÞ. The deriva-
tion of the formulas parallels that given for the SRS
energy [24]; it is given elsewhere [25]. The SRS derivation
combined Eq. (1) with the commutator identity

ĤH� þ V̂V ;ÂA
� �

¼ 0, the cPA theory derivation combines

Eq. (3) with ÂA ĤH� þ V̂V
� 


� ĤH� þ V̂V
y� 

ÂA ¼ 0. The cPA

analog of the SRS energy (Eq. 2) is

DESðkÞ ¼ hF �jðV̂Vy þ DÞÂAjF ðkÞi=hF �jÂAjF ðkÞi; ð11Þ

the corrected SRS (cSRS) energy. It differs from the SRS
expression (Eq. 2) not only inV̂V

y þ D replacing V̂V and F
(k) from (Eq. 10) replacing the PA F (k), but also in the
omission of the multiplicative factor, k. In deriving
Eq. (11) we discarded the term ð1� kÞhF �jÂAV̂VjF ðkÞi
because it contributes nothing in the k ¼ 1 limit. In so
doing, we discarded contributions of all orders in k.

The arguments leading to Eq. (11) are repeated to
obtain the improved energy

DEIðkÞ¼
Eð1ÞþD
� �

F � ÂA
�� ��F ðkÞ� �

þhF ð1ÞjðV̂VyþDÞÂAjF ðkÞi
F �þF ð1Þ ÂA

�� ��F ðkÞ� � :

ð12Þ
Substitution of the PA functions and energies, replacing
V̂V

y
by V̂V , and setting D ¼ 0, gives the improved SRS

(IRS) energy [24]. It is generally more accurate than the
SRS formula [24]. Results calculated with Eq. (12) using
the cPA F (k) and Eð1Þ are corrected IRS (cIRS) energies.

We applied the cPA theory to the lowest states of He2
and HeLi+ and to the lowest triplet and singlet states
of LiH. We present results here only for singlet LiH,
the system which offers the greatest challenge. It forms
a covalent bond; the others do not. It has an infinite
number of unphysical energies below the ground-state
energy; He2 and HeLi+ have only two. The SRS energies
for singlet LiH, compared to the energies of the other
systems, are very inaccurate around Re.

The calculations were done using a program which
differs from those previously described [8, 18] primarily
in the theory implemented. The program transforms the
operator equations into matrix equations in a full con-
figuration interaction (FCI) approximation. It is not an
implementation meant for practical use, but one that
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allows us to study SAPTs without introducing approx-
imations beyond those of the perturbation theory and
the use of finite basis sets. In effect, our calculations are
done on numerically solvable, realistic models of real
molecules. We used set 3 of the LiH basis sets used
previously [18]. It gives 9,728 configurations. We set
cLi ¼ 2.0 bohr and cH ¼ 0.

We summarize the results obtained for singlet LiH
by substituting F� and the first-order functions and
energies of the PA and cPA theories in Eqs. (11) and
(12) in Fig. 1. Each curve represents the perturbation
theory interaction energy divided by the FCI energy.
The closer the ratio is to 1, the more accurate the per-
turbation theory energy. The cSRS energies are per-
ceptibly more accurate than the SRS results only for
R < 5 bohr, but the improvement is small relative to
the SRS error. The same is true for the cIRS and IRS
energies. At the largest R values, the perturbation the-
ories are almost exact because they reproduce exactly
the leading terms in the asymptotic 1/R expansion.
In contrast, substituting the AM theory F (1) and Eð1Þ

in Eq. (11) gives less than half of the asymptotic energy;
in Eq. (12) less than three-fourths [22]. The very large
errors shown at the smallest R values are misleading.
It is not so much that the perturbation theory energies
become less accurate there but that the FCI energy
rapidly increases to zero.

The results obtained for HeLi+ are like those for LiH
except that the cSRS energy is less accurate than the SRS
energy for R < 5 bohr and the IRS energy is less ac-
curate than the SRS energy for R < 4 bohr. The cal-
culations on He2 and triplet LiH revealed no significant
difference between the cSRS and SRS energies and be-
tween the cIRS and IRS energies. For the latter two
systems, Re is much greater than the largest c, namely,
for He2 Re > 25cHe and for triplet LiH Re > 5cLi. In

contrast, Re@1.5cLi for singlet LiH and Re ffi 2:4cLiþ for
HeLi+.

It may seem disappointing that the cPA and SRS
theories yield equivalent numerical results, but numeri-
cal accuracy is not the SRS theory’s major shortcoming.
It is that carried to infinite order the SRS theory cannot
predict even ground-state energies for most systems be-
cause E� and E1 are on different sheets of EðkÞ [8]. The
cPA eigenproblem (Eq. 3), by design, has no unphysical
eigenvalues below the physical ground-state solution.
The physical solution’s eigenvalue E1–D lies on the same
sheet of the EðkÞ surface as E�, a necessary condition for
convergence of the perturbation expansion.

4 Zero-order induction

From a practical perspective it is most desirable that high
accuracy be achieved by an SAPT at first order in thewave
function. In this sectionwe show that an alternative choice
for the unperturbed problem markedly improves the
accuracy achieved around the potential minimum while
matching the high accuracy of the SRS and cPA theories
at the largest separations. The arguments that suggest the
alternative choice will be given in a later, detailed account
of the theory.

Because at infinite separation the eigenfunction F1 of
Eq. (3) becomes equal to F� it is reasonable to assume
that F1 can be accurately approximated at large R by a
function vA of the A coordinates times a function vB of
the B coordinates. It is also reasonable that vA and vB

are eigenfunctions of Hamiltonians for each atom in the
field of the other. Examination of the induction contri-
bution to the first-order cPA function suggests that vA

should be an eigenfunction of

ĤHA ¼ ĤH�
A þ v̂vBA þ ĴJB�

A � ð1� wÞûuBA ; ð13Þ
where ĤH�

A is the unperturbed A-atom Hamiltonian, ĴJB�
A

is Coulomb potential calculated using the lowest eigen-
function of ĤH�

B, and w ¼ NA!NB!N!. The factor w is the
weight of the identity operator in ÂA. The calculation of
an eigenfunction of ĤHA is comparable in difficulty to
calculating an eigenfunction of ĤH�

A.
Equation (3) is the starting point for the second new

SAPT. We choose

ĤH ð0Þ ¼ ĤHA þ ĤHB ð14Þ
as the unperturbed Hamiltonian rather than ĤH�. The
unperturbed eigenfunction F (0) ¼ vAvB, the product of
the lowest eigenfunctions of ĤHA and ĤHB. Its eigenvalue
E (0) is the sum of the lowest ĤHA and ĤHB eigenvalues.
It follows from Eq. (3) that the perturbation is

V̂V ¼ ĝg� ĴJB�
A � ĴJA�

B þÂA ûu� Dð Þ � wûu : ð15Þ

To linearize Eq. (3) we set D ¼
F ð0Þ ÂAûu

�� ��F ð0Þ� �
= F ð0Þ ÂA

�� ��F ð0Þ� �
. We make the usual

assumptions: EðkÞ ¼ Eð0Þ þ
P1

n¼1 knEðnÞ and F ðkÞ ¼
F ð0Þþ

P1
n¼1 knF ðnÞ, with F ð0ÞjF ð0Þ� �

¼ 1 and F �jF ðkÞh i ¼
1. The set of perturbation equations follows from

Fig. 1. Comparison of the accuracy of the singlet ground-state
interaction energy between Li and H calculated with the perturba-
tion theories described in Sects. 1 and 3. Each curve represents
the ratio of a perturbation theory interaction energy to the full
configuration interaction (FCI) energy. The lower pair of curves,
labeled S, compare the symmetrized Rayleigh–Schrödinger (SRS)
energy ratio (dotted line) to the corrected SRS (cSRS) energy ratio
(solid line). They differ noticeably only for R < 5 bohr. The upper
pair of curves, labeled I, compare the improved SRS (IRS) energy
ratio (dotted line) to the corrected IRS (cIRS) energy ratio (solid
line). The SRS and IRS energies were calculated using the first-
order polarization approximation (PA) function and energy; the
cSRS and cIRS were calculated using the first-order corrected PA
function and energy
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ĤH ð0Þ þ kV̂V
� 


F ðkÞ ¼ EðkÞF ðkÞ : ð16Þ

Because the zero-order function F (0) includes induction
corrections to F� we call this the zero-order induction
(ZI) theory. The ZI interaction energy is calculated from
Eqs. (11) and (12) by substituting the ZI functions and
energies for the cPA, then adding Eð0Þ � E�.

We applied the ZI theory to the systems on which the
cPA theory was tested but we report here only the results
obtained for the most difficult case, singlet LiH. We
present in Fig. 2 results calculated with the energy Eqs.
(11) and (12). The PA calculations were described in
Sect. 3. The ZI results were calculated by substituting the
ZI function F (0) + F (1) for F (k), F (0) for F� and the ZI
Eð1Þ in Eqs. (11) and (12). We used the definitions of V̂V
and D given in this section. All the calculations used
cLi ¼ 2.0 bohr. The results obtained with Eq. (11) are
labeled SZI, and those obtained with Eq. (12) are labeled
IZI.

Figure 2 shows that the ZI theory is more accurate
than the SRS theory at all R and greatly so around
Re @ 3.0 bohr. Both theories become exact, ratio equal
to 1, at the largest R values. At Re the SZI energy is in
error by 2.4% and the IZI energy by 1.1%. The ZI
theory is least accurate at R ¼ 7.0 bohr, where the SZI
error is 23.6% and the IZI error is 22.4%. Attempts to
improve the accuracy there by defining / (r) differently
gave no significant improvement. By carrying the ZI
calculations to third order in the wave function the error
was cut in half.

Figure 2 raises the question, how can the ZI theory be
so accurate around Re and at large R, but so poor at
intermediate distances? The answer is that by including
induction contributions in the zero-order function the ZI
theory improves the cPA theory most at smaller R. At
the largest R values the interaction energy is given ac-
curately by the asymptotic dispersion energy, which the
first-order cPA and ZI functions reproduce correctly. It
may seem surprising that the induction contribution is so

important around Re but the same effect has been noted
in calculations on ground-state H2 [26].

An alternative view of the accuracy of the ZI theory is
provided by Fig. 3. We remarked previously that plot-
ting the ratio of the approximate interaction energies to
the FCI energy could be misleading with regard to the
significance of the errors. In Fig. 3 the SRS and IZI
interaction energies are compared directly to the FCI
values.

5 Discussion

We have outlined two new SAPTs and shown how they
are better than the SRS theory. A detailed exposition of
the theories and the results obtained with them will be
given elsewhere.

We have designed the new SAPTs with three goals in
mind. The first is the traditional goal that the product of
unperturbed atomic wave functions be an exact solution
of the starting eigenproblem at infinite separation. The
second goal, one not achieved by the EL-HAV and AM-
AP theories, is that the correct asymptotic dependence
on 1/R be calculable from the first-order wave function.
Lastly, that carried to infinite order the theories should
be capable, at least in principle, of giving the physical
ground-state energy. The PA/SRS theory clearly fails in
this regard for nearly all systems [8]. There is good
reason to believe that the HS theory also fails [18, 19].
The new theories achieve all three goals.

To achieve simultaneously the second and third goals
we introduced the short-range potential ûu ¼ ûuAB þ ûuBA.
The potential ûuAB inhibits the transfer of valence electrons
from atom B to atom A and thus prevents the collapse of
the B electrons into the A-atom core. We made ûuAB short-
ranged so it could not affect the asymptotic 1/R depen-
dence of the interaction energy. The potential ûuAB
depends on a parameter cA characteristic of A. The effect
of ûu is to shift the lowest unphysical energy Eu

1 suffi-
ciently far above the physical ground-state energy, E1, to
make Eu

1 > E1 � D. The perturbation calculations show
that the asymptotic properties of both the cPA and
ZI F (1)s are as desired. By solving Eq. (7) we verified
that Eu

1 > E1 � D from R a little less than Re to infinity
with the c parameters chosen as suggested. This means

Fig. 2. Comparison of the accuracy of the singlet ground-state
interaction energy between Li and H calculated with the perturba-
tion theories described in Sects. 1 and 4. Each curve represents the
ratio of a perturbation theory energy to the FCI interaction energy.
The SRS and IRS energies were calculated using the PA theory’s
first-order wave function and energy. The zero-order induction (ZI)
energies obtained with Eq. (11) (SZI) and those obtained with Eq.
(12) (IZI) were calculated using the ZI theory’s zero- and first-order
wave functions and its first-order energy

Fig. 3. Direct comparison of the SRS and IZI interaction energies,
truncated after first order in the wave function, for the 1P ground
state of LiH to the FCI energy at a range of separations R
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that E� and E1–D are on the same sheet of the Riemann
surface; a necessary condition for convergence of the
perturbation expansion to the physical ground-state
solution.

Herring introduced formally a potential akin to ûuAB as
a means of obtaining atomic-like functions to use in
understanding the spin Hamiltonian at large separations
[23]. In effect, he worked with approximate eigenfunc-
tions of ĤH
 ¼ ĤH� þ V̂V � ûu. He showed that ûu in ĤH
 made
its lowest-energy solution localize the A electrons about
the A nucleus and the B electrons about the B nucleus
and that it became equal to F� at infinite separation.
The terms we added to ĤH
 to get Eq. (3) ensure that
ÂAF1 / U1, the physical ground-state function [21, 22].
The terms added also assure that the lowest eigenfunc-
tion of Eq. (3) is least distorted from that of ĤH
 and,
thus, that it localizes, as much as possible, each atom’s
electrons about its nucleus. In the R ¼ 1 limit, E� is a
nondegenerate eigenvalue of Eq. (3), whereas it is a
degenerate eigenvalue of ĤH� þ V̂V , i.e., Eq. (3) exhibits no
exchange degeneracy. This should make the radius of
convergence of perturbation theories based on Eq. (3)
larger than those based on Eq. (1).

Patkowski, Jeziorski and Szalewicz (PJS) carried out
calculations on H2 [20] and LiH to study the effect on
convergence of a short-range potential incorporated into
several SAPT variants, recommending in the end a reg-
ularized EL-HAV theory. The PJS short-range potential,
V̂Vt differs from our ûu only in that / (r) ¼ r)1exp ()gr2)
rather than the function in Eq. (9). To facilitate com-
parison to our work we note that the two forms
of regularized EL-HAV theory tested correspond to
solving, in our notation,

ĤH� � E� þ V̂V � ûuþ ûuÂA
� �

F ¼ E� E�ð ÞÂAF : ð17Þ

This should be compared to our Eq. (3). The most
significant differences are that ÂAF appears on the right
rather than just F and that ûuÂA appears on the left rather
than ÂAûu. A physical eigenfunction Uk of ĤH� þ V̂V , sub-
stituted for F, satisfies Eq. (17) but not Eq. (3). The Uk

are, however, eigenfunctions of the Hermitian adjoint of
the operator in square brackets in Eq. (3). The PJS
results suggest what we expect to find with the cPA and
ZI theories. They found that introducing ûu increased the
radius of convergence of the SAPTs and that the
contribution of ûuÂA to F was relatively unimportant
for calculating the interaction energy. The last result is
consistent with our results with the cPA theory.

The primary difference between the derivations of the
cPA and PA/SRS theories is that the former starts from
Eq. (3), the latter from Eq. (1). They both use ĤH� as the
unperturbed Hamiltonian. The most important differ-
ence between the properties of Eqs. (1) and (3) lies in
their energy spectra. The lowest unphysical energy, Eu

1,
of Eq. (3) was made to be greater than the lowest
physical energy, E1 ¼ E1 � D. The lowest physical en-
ergy of eq. (1) generally lies in a continuum of unphys-
ical energies. The most important consequence of this
difference is that the cPA theory can give uniquely the
physical ground-state energy, E1, if carried to infinite
order; the PA/SRS theory cannot [8]. The equations for

the cPA perturbation functions and energies differ
from the PA/SRS equations only through the terms
�ûuþÂA ûu� Dð Þ in the former. The effect of these terms
on the interaction energy is small in the lowest orders,
thus explaining why the PA/SRS theory works well
enough when truncated to low order.

Because the cPA theory was no more accurate than
the PA theory when the wave function was truncated
after first order we developed the ZI theory. We started
from Eq. (3) again, but we did not set the unperturbed
Hamiltonian ĤH ð0Þ equal to ĤH�. We defined it instead,
Eqs. (13) and (14), so that F (0) would be a product of
polarized atomic functions, functions which include
changes induced in each atom by its neighbor. The re-
sults for LiH show that the ZI theory is much more
accurate than the cPA and SRS theories around Re. The
price one pays for this is that one must approximate F (0)

as well as F�, and the difference Eð0Þ � E�. The latter
may be calculated directly.

We have shown that one can design fundamentally
sound SAPTs by understanding the cause of the fun-
damental problems of the PA/SRS theory and by
introducing changes in the traditional approach to
counteract the cause. We have shown that this can be
done in a way that exploits our understanding of the
separated atom limit and equals the ability of the
PA/SRS theory to reproduce correctly the asymptotic
1/R dependence of the energy in low order.
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Note added in proof

At the end of Sec. 2 we stated that there was no upper
bound to the parameter c. In a private communication
B. Jeziorski has pointed out that one can place an upper
bound on c by considering the states that arise from the
transfer of electrons between A and B when k ¼ �1. The
larger c, the lower their energies, which is just the
opposite of the behaviour of such states at k ¼ þ1. This
point will be considered at length in the full paper on the
cPA/cSRS theory.
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